Skip to content
  • hg0088新2备用网
  • 澳门皇冠备用网
  • 澳门赌城网
  • 皇冠现金盘
logo

hg0088新2备用网 | 澳门皇冠备用网 | 皇冠现金盘 | 澳门赌城网

hg0088新2备用网-邀请您体验K8娱乐
hg0088新2备用网注册hg0088新2备用网登录
  • Home
  • 皇冠现金盘
  • 12博备用网址:Bioplastic,918.com博天堂
皇冠现金盘
2023年9月24日

12博备用网址:Bioplastic,918.com博天堂

Bioplastic

12博备用网址:Bioplastic,918.com博天堂

Bioplastics are plastic materials produced from renewable biomass sources, such as vegetable fats and oils, corn starch, straw, woodchips, sawdust, recycled , etc. Some bioplastics are obtained by processing directly from natural biopolymers including polysaccharides (e.g., starch, cellulose, chitosan, and ) and proteins (e.g., soy protein, gluten, and gelatin), while others are chemically synthesised from sugar derivatives (e.g., lactic acid) and lipids (oils and fats) from either plants or animals, or biologically generated by fermentation of sugars or lipids. In contrast, common plastics, such as plastics (also called petro-based polymers) are derived from petroleum or natural gas.

One advantage of bioplastics is their independence from fossil fuel as a raw material, which is a finite and globally unevenly distributed resource linked to petroleum politics and environmental impacts. studies show that some bioplastics can be made with a lower carbon footprint than their fossil counterparts, for example when biomass is used as raw material and also for energy production. However, other bioplastics’ processes are less efficient and result in a higher carbon footprint than fossil plastics.

The distinction between non-fossil-based (bio)plastic and fossil-based plastic is of limited relevance since materials such as petroleum are themselves merely fossilized biomass. As such, whether any kind of plastic is degradable or non-degradable (durable) depends on its molecular structure, not on whether or not the biomass constituting the raw material is fossilized. Both durable bioplastics, such as or (bio-based analogues of fossil-based polyethylene terephthalate and polyethylene), and degradable bioplastics, such as polylactic acid, polybutylene succinate, or polyhydroxyalkanoates, exist. Bioplastics must be recycled similar to fossil-based plastics to avoid plastic pollution; “drop-in” bioplastics (such as biopolyethylene) fit into existing recycling streams. On the other hand, recycling biodegradable bioplastics in the current recycling streams poses additional challenges, as it may raise the cost of sorting and decrease the yield and the quality of the recyclate. However, biodegradation is not the only acceptable end-of-life disposal pathway for biodegradable bioplastics, and mechanical and chemical recycling are often the preferred choice from the environmental point of view.

may offer an end-of-life pathway in certain applications, such as agricultural mulch, but the concept of biodegradation is not as straightforward as many believe. Susceptibility to biodegradation is highly dependent on the chemical backbone structure of the polymer, and different bioplastics have different structures, thus it cannot be assumed that bioplastic in the environment will readily disintegrate. Conversely, biodegradable plastics can also be synthesized from fossil fuels.

As of 2018, bioplastics represented approximately 2% of the global plastics output (>380 million tons). With continued research on bioplastics, investment in bioplastic companies and rising scrutiny on fossil-based plastics, bioplastics are becoming more dominant in some markets, while the output of fossil plastics also steadily increases.

The International Union of Pure and Applied Chemistry define biobased polymer as:

Few commercial applications exist for bioplastics. Cost and performance remain problematic. Typical is the example of Italy, where biodegradable plastic bags are compulsory for shoppers since 2011 with the introduction of a specific law. Beyond structural materials, electroactive bioplastics are being developed that promise to carry electric current.

Bioplastics are used for disposable items, such as , crockery, cutlery, pots, bowls, and straws.

Biopolymers are available as coatings for paper rather than the more common petrochemical coatings.

Bioplastics called drop-in bioplastics are chemically identical to their fossil-fuel counterparts but made from renewable resources. Examples include , , bio-propylene, , and biobased nylons. Drop-in bioplastics are easy to implement technically, as existing infrastructure can be used. A dedicated bio-based pathway allows to produce products that cannot be obtained through traditional chemical reactions and can create products which have unique and superior properties, compared to fossil-based alternatives.

Thermoplastic starch represents the most widely used bioplastic, constituting about 50 percent of the bioplastics market. Simple starch bioplastic film can be made at home by gelatinizing starch and solution casting. Pure starch is able to absorb humidity, and is thus a suitable material for the production of drug capsules by the pharmaceutical sector. However, pure starch-based bioplastic is brittle. such as glycerol, glycol, and sorbitol can also be added so that the starch can also be processed thermo-plastically. The characteristics of the resulting bioplastic (also called “thermoplastic starch”) can be tailored to specific needs by adjusting the amounts of these additives. Conventional polymer processing techniques can be used to process starch into bioplastic, such as extrusion, injection molding, compression molding and solution casting. The properties of starch bioplastic is largely influenced by amylose/amylopectin ratio. Generally, high-amylose starch results in superior mechanical properties. However, high-amylose starch has less processability because of its higher gelatinization temperature and higher melt viscosity.

Starch-based bioplastics are often blended with biodegradable polyesters to produce starch/polylactic acid, starch/polycaprolactone or starch/Ecoflex (polybutylene adipate-co-terephthalate produced by BASF) blends. These blends are used for industrial applications and are also compostable. Other producers, such as Roquette, have developed other starch/polyolefin blends. These blends are not biodegradable, but have a lower carbon footprint than petroleum-based plastics used for the same applications.

Starch is cheap, abundant, and renewable.

Starch-based films (mostly used for packaging purposes) are made mainly from starch blended with thermoplastic polyesters to form biodegradable and compostable products. These films are seen specifically in consumer goods packaging of magazine wrappings and bubble films. In food packaging, these films are seen as bakery or fruit and vegetable bags. Composting bags with this films are used in selective collecting of organic waste. Further, starch-based films can be used as a paper.

Starch-based nanocomposites have been widely studied, showing improved mechanical properties, thermal stability, moisture resistance, and gas barrier properties.

Cellulose bioplastics are mainly the (including cellulose acetate and nitrocellulose) and their derivatives, including celluloid.

Cellulose can become thermoplastic when extensively modified. An example of this is cellulose acetate, which is expensive and therefore rarely used for packaging. However, cellulosic fibers added to starches can improve mechanical properties, permeability to gas, and water resistance due to being less hydrophilic than starch.

A group at Shanghai University was able to construct a novel green plastic based on cellulose through a method called hot pressing.

Other polysaccharides such as chitosan and can also be processed into plastic forms. Chitosan is dissolvable in mild acidic conditions and thus can be easily processed into films by solution casting. Chitosan has an excellent film forming ability. Besides, chitosan, mixed with a limited amount of acid, can also be thermomechanically processed into a plasticised form using an internal batch mixer and compression molder. This high-viscosity condition during thermomechanical processing allows chitosan to be easily blended with plasticizers, nanoparticles, or other biopolymers. Under solution conditions, the production of blended materials based on chitosan, which is positively charged, with other negatively charged biopolymers such as carboxymethyl cellulose, alginate and proteins is challenging as the electrostatic interaction between the two biopolymers will usually lead to . However, bulk chitosan blends can be produced by high-viscosity thermomechanical processing, which may also display much better mechanical properties and hydrolytic stability. Alginate (usually sodium alginate or calcium alginate) is dissolvable in water so alginate solutions can be cast into films. Blended with limited amounts of water and plasticizers, alginate can also be thermomechanically processed into plasticised films. Plasticisers typically as glycerol can make the processed chitosan or alginate films flexible.

Chitosan is a studied biopolymer that can be used as a packaging alternative that increases shelf life and reduces the use of synthetic plastics. Chitosan is a polysaccharide that is obtained through the of chitin, the second most abundant polysaccharide on Earth derived from the non-edible portions of marine invertebrates. The increased use of chitosan has the possibility to reduce food waste and the waste from food packaging. Chitosan is compiled of antimicrobial activities and film forming properties which make it biodegradable and deter growth of spoilage. In comparison to degrading synthetic plastics, which may take years, biopolymers such as chitosan can degrade in weeks. Antimicrobial packaging includes techniques such as modified atmospheric packaging that reduce activities of microbes and bacterial growth. Chitosan as an alternative promotes less food waste and less reliance on non-degradable plastic materials.

Bioplastics can be made from proteins from different sources. For example, wheat gluten and casein show promising properties as a raw material for different biodegradable polymers.

Additionally, soy protein is being considered as another source of bioplastic. Soy proteins have been used in plastic production for over one hundred years. For example, body panels of an original Ford automobile were made of soy-based plastic.

There are difficulties with using soy protein-based plastics due to their water sensitivity and relatively high cost. Therefore, producing blends of soy protein with some already-available biodegradable polyesters improves the water sensitivity and cost.

The biopolyesters are mainly (PHAs) like the (PHB), polyhydroxyvalerate (PHV) and polyhydroxyhexanoate (PHH).

Polylactic acid (PLA) is a produced from maize or . Superficially, it is similar to conventional petrochemical-based mass plastics like PS. Its advantages are that it is derived from plants, and it biodegrades readily. Unfortunately, it exhibits inferior impact strength, thermal robustness918.com博天堂 , and barrier properties (blocking air transport across the membrane). PLA and PLA blends generally come in the form of granulates. PLA is used on a limited scale for the production of films, fibers, plastic containers, cups, and bottles. PLA is also the most common type of plastic filament used for home .

The biopolymer poly-3-hydroxybutyrate (PHB) is a polyester produced by certain bacteria processing glucose, corn starch or wastewater. Its characteristics are similar to those of the petroplastic polypropylene. PHB production is increasing. The South American sugar industry, for example, has decided to expand PHB production to an industrial scale. PHB is distinguished primarily by its physical characteristics. It can be processed into a transparent film with a melting point higher than 130 degrees Celsius, and is biodegradable without residue.

Polyhydroxyalkanoates (PHA) are linear polyesters produced in nature by bacterial of sugar or lipids. They are produced by the bacteria to store carbon and energy. In industrial production, the polyester is extracted and purified from the bacteria by optimizing the conditions for the fermentation of sugar. More than 150 different monomers can be combined within this family to give materials with extremely different properties. PHA is more ductile and less elastic than other plastics, and it is also biodegradable. These plastics are being widely used in the medical industry.

is a biopolymer derived from natural oil. It is also known under the tradename Rilsan B, commercialized by Arkema. PA 11 belongs to the technical polymers family and is not biodegradable. Its properties are similar to those of , although emissions of greenhouse gases and consumption of nonrenewable resources are reduced during its production. Its thermal resistance is also superior to that of PA 12. It is used in high-performance applications like automotive fuel lines, pneumatic airbrake tubing, electrical cable antitermite sheathing, flexible oil and gas pipes, control fluid umbilicals, sports shoes, electronic device components, and catheters.

A similar plastic is Polyamide 410 (PA 410), derived 70% from castor oil, under the trade name EcoPaXX, commercialized by DSM.
PA 410 is a high-performance polyamide that combines the benefits of a high melting point (approx. 250 °C), low moisture absorption and excellent resistance to various chemical substances.

The basic building block (monomer) of polyethylene is ethylene. Ethylene is chemically similar to, and can be derived from ethanol, which can be produced by fermentation of agricultural feedstocks such as sugar cane or corn. Bio-derived polyethylene is chemically and physically identical to traditional polyethylene – it does not biodegrade but can be recycled. The Brazilian chemicals group Braskem claims that using its method of producing polyethylene from sugar cane ethanol captures (removes from the environment) 2.15 tonnes of CO2 per tonne of Green Polyethylene produced.

With corn being a common feedstock, it is unsurprising that some bioplastics are made from this.

Under the bioplastics manufacturing technologies there is the “plant factory” model, which uses genetically modified crops or to optimise efficiency.

The condensation of polyamines and cyclic carbonates produces polyhydroxyurethanes. Unlike traditional cross-linked polyurethanes, cross-linked polyhydroxyurethanes are in principle amenable to recycling and reprocessing through dynamic transcarbamoylation reactions.

A number bioplastic classes have been synthesized from plant and animal derived fats and oils. Polyurethanes, polyesters, and a number of other types of polymers have been developed with comparable properties to crude oil based materials. The recent development of olefin metathesis has opened a wide variety of feedstocks to economical conversion into biomonomers and polymers. With the growing production of traditional vegetable oils as well as low cost microalgae derived oils, there is huge potential for growth in this area.

Jar made of PLA-blend bio-flex, a bioplastic

Materials such as starch, cellulose, wood, sugar and biomass are used as a substitute for fossil fuel resources to produce bioplastics; this makes the production of bioplastics a more sustainable activity compared to conventional plastic production. The environmental impact of bioplastics is often debated, as there are many different metrics for “greenness” (e.g., water use, energy use, deforestation, biodegradation, etc.). Hence bioplastic environmental impacts are categorized into nonrenewable energy use, climate change, eutrophication and acidification. Bioplastic production significantly reduces greenhouse gas emissions and decreases non-renewable energy consumption. Firms worldwide would also be able to increase the environmental sustainability of their products by using bioplastics

Although bioplastics save more nonrenewable energy than conventional plastics and emit less greenhouse gasses compared to conventional plastics, bioplastics also have negative environmental impacts such as eutrophication and acidification. Bioplastics induce higher eutrophication potentials than conventional plastics. Biomass production during industrial farming practices causes nitrate and phosphate to filtrate into water bodies; this causes eutrophication, the process in which a body of water gains excessive richness of nutrients. Eutrophication is a threat to water resources around the world since it causes harmful algal blooms that create oxygen dead zones, killing aquatic animals. Bioplastics also increase acidification. The high increase in eutrophication and acidification caused by bioplastics is also caused by using chemical fertilizer in the cultivation of renewable raw materials to produce bioplastics.

Other environmental impacts of bioplastics include exerting lower human and terrestrial ecotoxicity and carcinogenic potentials compared to conventional plastics. However, bioplastics exert higher aquatic ecotoxicity than conventional materials. Bioplastics and other bio-based materials increase stratospheric ozone depletion compared to conventional plastics; this is a result of nitrous oxide emissions during fertilizer application during industrial farming for biomass production. Artificial fertilizers increase nitrous oxide emissions especially when the crop does not need all the nitrogen. Minor environmental impacts of bioplastics include toxicity through using pesticides on the crops used to make bioplastics. Bioplastics also cause carbon dioxide emissions from harvesting vehicles. Other minor environmental impacts include high water consumption for biomass cultivation, soil erosion, soil carbon losses and , and they are mainly are a result of land use associated with bioplastics. Land use for bioplastics production leads to lost carbon sequestration and increases the carbon costs while diverting land from its existing uses

Although bioplastics are extremely advantageous because they reduce non-renewable consumption and GHG emissions, they also negatively affect the environment through land and water consumption, using pesticide and fertilizer, eutrophication and acidification; hence one’s preference for either bioplastics or conventional plastics depends on what one considers the most important environmental impact.

Another issue with bioplastics, is that some bioplastics are made from the edible parts of crops. This makes the bioplastics compete with food production because the crops that produce bioplastics can also be used to feed people. These bioplastics are called “1st generation feedstock bioplastics”.
2nd generation feedstock bioplastics use non-food crops (cellulosic feedstock) or waste materials from 1st generation feedstock (e.g. waste vegetable oil). Third generation feedstock bioplastics use algae as the feedstock.

Biodegradation of any plastic is a process that happens at solid/liquid interface whereby the enzymes in the liquid phase depolymerize the solid phase. Certain types of bioplastics as well as conventional plastics containing additives are able to biodegrade. Bioplastics are able to biodegrade in different environments hence they are more acceptable than conventional plastics. of bioplastics occurs under various environmental conditions including soil, aquatic environments and compost. Both the structure and composition of biopolymer or bio-composite have an effect on the biodegradation process, hence changing the composition and structure might increase biodegradability. Soil and compost as environment conditions are more efficient in biodegradation due to their high microbial diversity. Composting not only biodegrades bioplastics efficiently but it also significantly reduces the emission of greenhouse gases. Biodegradability of bioplastics in compost environments can be upgraded by adding more soluble sugar and increasing temperature. Soil environments on the other hand have high diversity of microorganisms making it easier for biodegradation of bioplastics to occur. However, bioplastics in soil environments need higher temperatures and a longer time to biodegrade. Some bioplastics biodegrade more efficiently in water bodies and marine systems; however, this causes danger to marine ecosystems and freshwater. Hence it is accurate to conclude that biodegradation of bioplastics in water bodies which leads to the death of aquatic organisms and unhealthy water can be noted as one of the negative environmental impacts of bioplastics.

While plastics based on organic materials were manufactured by chemical companies throughout the 20th century, the first company solely focused on bioplastics—Marlborough Biopolymers—was founded in 1983. However, Marlborough and other ventures that followed failed to find commercial success, with the first such company to secure long-term financial success being the Italian company Novamont, founded in 1989.

Bioplastics remain less than one percent of all plastics manufactured worldwide. Most bioplastics do not yet save more carbon emissions than are required to manufacture them. It is estimated that replacing 250 million tons of the plastic manufactured each year with bio-based plastics would require 100 million hectares of land, or 7 percent of the arable land on Earth. And when bioplastics reach the end of their life cycle, those designed to be compostable and marketed as biodegradable are often sent to landfills due to the lack of proper composting facilities or waste sorting, where they then release methane as they break down anaerobically.

COPA (Committee of Agricultural Organisation in the European Union) and COGEGA (General Committee for the Agricultural Cooperation in the European Union) have made an assessment of the potential of bioplastics in different sectors of the European economy:

  • 1925: Polyhydroxybutyrate was isolated and characterised by French microbiologist
  • 1855: First (inferior) version of linoleum produced
  • 1862: At the Great London Exhibition, Alexander Parkes displays , the first thermoplastic. Parkesine is made from nitrocellulose and had very good properties, but exhibits extreme flammability. (White 1998)
  • 1897: Still produced today, Galalith is a milk-based bioplastic that was created by German chemists in 1897. Galalith is primarily found in buttons. (Thielen 2014)
  • 1907: Leo Baekeland invented Bakelite, which received the National Historic Chemical Landmark for its non-conductivity and heat-resistant properties. It is used in radio and telephone casings, kitchenware, firearms and many more products. (Pathak, Sneha, Mathew 2014)
  • 1912: Brandenberger invents Cellophane out of wood, cotton, or hemp cellulose. (Thielen 2014)
  • 1920s: Wallace Carothers finds Polylactic Acid (PLA) plastic. PLA is incredibly expensive to produce and is not mass-produced until 1989. (Whiteclouds 2018)
  • 1926: Maurice Lemoigne invents polyhydroxybutyrate (PHB) which is the first bioplastic made from bacteria. (Thielen 2014)
  • 1930s: The first bioplastic car was made from soy beans by Henry Ford. (Thielen 2014)
  • 1940-1945: During World War II, an increase in plastic production is seen as it is used in many wartime materials. Due to government funding and oversight the United States production of plastics (in general, not just bioplastics) tripled during 1940-1945 (Rogers 2005). The 1942 U.S. government short film The Tree in a Test Tube illustrates the major role bioplastics played in the World War II victory effort and the American economy of the time.
  • 1950s: Amylomaize (>50% amylose content corn) was successfully bred and commercial bioplastics applications started to be explored. (Liu, Moult, Long, 2009) A decline in bioplastic development is seen due to the cheap oil prices, however the development of synthetic plastics continues.
  • 1970s: The environmental movement spurred more development in bioplastics. (Rogers 2005)
  • 1983: The first bioplastics company, Marlborough Biopolymers, is started which uses a bacteria-based bioplastic called biopal. (Feder 1985)
  • 1989: The further development of PLA is made by Dr. Patrick R. Gruber when he figures out how to create PLA from corn. (Whiteclouds 2018). The leading bioplastic company is created called Novamount. Novamount uses matter-bi, a bioplastic, in multiple different applications. (Novamount 2018)
  • 1992: It is reported in Science that PHB can be produced by the plant Arabidopsis thaliana. (Poirier, Dennis, Klomparens, Nawrath, Somerville 1992)
  • Late 1990s: The development of TP starch and BIOPLAST from research and production of the company BIOTEC lead to the BIOFLEX film. BIOFLEX film can be classified as blown film extrusion, flat film extrusion, and injection moulding lines. These three classifications have applications as follows: Blown films – sacks, bags, trash bags, mulch foils, hygiene products, diaper films, air bubble films, protective clothing, gloves, double rib bags, labels, barrier ribbons; Flat films – trays, flower pots, freezer products and packaging, cups, pharmaceutical packaging; Injection moulding – disposable cutlery, cans, containers, performed pieces, CD trays, cemetery articles, golf tees, toys, writing materials. (Lorcks 1998)
  • 2001: Metabolix inc. purchases Monsanto’s biopol business (originally Zeneca) which uses plants to produce bioplastics. (Barber and Fisher 2001)
  • 2001: Nick Tucker uses elephant grass as a bioplastic base to make plastic car parts. (Tucker 2001)
  • 2005: Cargill and Dow Chemicals is rebranded as NatureWorks and becomes the leading PLA producer. (Pennisi 2016)
  • 2007: Metabolix inc. market tests its first 100% biodegradable plastic called Mirel, made from corn sugar fermentation and genetically engineered bacteria. (Digregorio 2009)
  • 2012: A bioplastic is developed from seaweed proving to be one of the most environmentally friendly bioplastics based on research published in the journal of pharmacy research. (Rajendran, Puppala, Sneha娱乐918 , Angeeleena, Rajam 2012)
  • 2013: A patent is put on bioplastic derived from blood and a crosslinking agent like sugars, proteins, etc. (iridoid derivatives, diimidates, diones, carbodiimides, acrylamides, dimethylsuberimidates, aldehydes, Factor XIII, dihomo bifunctional NHS esters, carbonyldiimide, glyoxyls [sic], proanthocyanidin, reuterin). This invention can be applied by using the bioplastic as tissue, cartilage, tendons, ligaments, bones, and being used in stem cell delivery. (Campbell, Burgess, Weiss, Smith 2013)
  • 2014: It is found in a study published in 2014 that bioplastics can be made from blending vegetable waste (parsley and spinach stems, the husks from cocoa, the hulls of rice, etc.) with TFA solutions of pure cellulose creates a bioplastic. (Bayer, Guzman-Puyol, Heredia-Guerrero, Ceseracciu, Pignatelli, Ruffilli, Cingolani, and Athanassiou 2014)
  • 2016: An experiment finds that a car bumper that passes regulation can be made from nano-cellulose based bioplastic biomaterials using banana peels. (Hossain, Ibrahim, Aleissa 2016)
  • 2017: A new proposal for bioplastics made from Lignocellulosics resources (dry plant matter). (Brodin, Malin, Vallejos, Opedal, Area, Chinga-Carrasco 2017)
  • 2018: Many developments occur including Ikea starting industrial production of bioplastics furniture (Barret 2018), Project Effective focusing on replacing nylon with bio-nylon (Barret 2018), and the first packaging made from fruit (Barret 2018).
  • 2019: Five different types of Chitin nanomaterials were extracted and synthesized by the ‘Korea Research Institute of Chemical Technology’ to verify strong personality and antibacterial effects. When buried underground, 100% biodegradation was possible within six months.

*This is not a comprehensive list. These inventions show the versatility of bioplastics and important breakthroughs. New applications and bioplastics inventions continue to occur.

A bioplastic shampoo bottle made of PLA-blend bio-flex

The 13432 industrial standard must be met in order to claim that a plastic product is compostable in the European marketplace. In summary, it requires multiple tests and sets pass/fail criteria, including disintegration (physical and visual break down) of the finished item within 12 weeks, biodegradation (conversion of organic carbon into CO2) of polymeric ingredients within 180 days, plant toxicity and heavy metals. The 6400 standard is the regulatory framework for the United States and has similar requirements.

Many starch-based plastics, PLA-based plastics and certain – co-polyester compounds, such as and adipates, have obtained these certificates. Additive-based bioplastics sold as photodegradable or do not comply with these standards in their current form.

The ASTM D 6002 method for determining the compostability of a plastic defined the word compostable as follows:

that which is capable of undergoing biological decomposition in a compost site such that the material is not visually distinguishable and breaks down into carbon dioxide, water, inorganic compounds and biomass at a rate consistent with known compostable materials.

This definition drew much criticism because, contrary to the way the word is traditionally defined, it completely divorces the process of “composting” from the necessity of it leading to humus/compost as the end product. The only criterion this standard does describe is that a compostable plastic must look to be going away as fast as something else one has already established to be compostable under the traditional definition.

In January 2011, the ASTM withdrew standard ASTM D 6002, which had provided plastic manufacturers with the legal credibility to label a plastic as . Its description is as follows:

This guide covered suggested criteria, procedures, and a general approach to establish the compostability of environmentally degradable plastics.

The ASTM has yet to replace this standard.

The ASTM D6866 method has been developed to certify the biologically derived content of bioplastics. Cosmic rays colliding with the atmosphere mean that some of the carbon is the radioactive isotope carbon-14. CO2 from the atmosphere is used by plants in photosynthesis, so new plant material will contain both carbon-14 and carbon-12. Under the right conditions, and over geological timescales, the remains of living organisms can be transformed into . After ~100,000 years all the carbon-14 present in the original organic material will have undergone radioactive decay leaving only carbon-12. A product made from biomass will have a relatively high level of carbon-14, while a product made from petrochemicals will have no carbon-14. The percentage of renewable carbon in a material (solid or liquid) can be measured with an accelerator .
皇冠现金盘

There is an important difference between and biobased content. A bioplastic such as high-density polyethylene (HDPE) can be 100% biobased (i.e. 12博备用网址 contain 100% renewable carbon), yet be non-biodegradable. These bioplastics such as HDPE nonetheless play an important role in greenhouse gas abatement, particularly when they are combusted for energy 12博备用网址 production. The biobased component of these bioplastics is considered carbon-neutral since their origin is from biomass.

皇冠现金盘

文章导航

Previous Post
Next Post
AG尊龙凯时
凯发娱乐
ag亚游会
註冊美女01
新会员注册就送$5美金

最新文章

  • 探索LOL赛事外围赌钱的最佳平台与技巧
  • 如何在澳门安全购买老虎机设备与配件
  • 探索Mg电子游戏网站的魅力与精彩游戏体验
  • 如何通过USDT投资实现盈利?
  • 安全可靠的PG网赌软件下载官网安卓平台推荐

分类

  • hg0088新2备用网
  • 澳门皇冠备用网
  • 澳门赌城网
  • 皇冠现金盘
2025 年 9 月
一二三四五六日
1234567
891011121314
15161718192021
22232425262728
2930 
« 6 月    

hg0088新2备用网 澳门皇冠备用网 澳门赌城网 皇冠现金盘

hg0088新2备用网 | 澳门皇冠备用网 | 皇冠现金盘 | 澳门赌城网

欢迎来到:hg0088新2备用网

hg0088新2备用网是一家知名的在线娱乐平台,提供各种类型的线上游戏,如老虎机游戏、真人视讯等。其官方网站为https://008801.org,同时还提供hg0088新2备用网官网注册供玩家畅玩游戏。游戏平台注重用户体验和数据安全,提供专业的服务和优惠活动,备受玩家信赖和喜爱。

hg0088新2备用网应用近期版本更新


2022年7月11日 版本5.3.3

1.hg0088新2备用网移动项目组根据近期赛事类型,综合考虑玩家对不同赛事的参与热情,决定提升电子竞技类型赛事在界面中的显示顺序。

2022年6月28日 版本5.3.2

1.hg0088新2备用网近期将针对新兴赛事投放部分定向奖励,以鼓励用户在传统赛事的夏季休赛期期间尝试参与一些更具有活力的体育项目。

2022年5月17日 版本5.3.1

1.hg0088新2备用网体育应用内投放有关欧冠赛事的红利红包。
2.hg0088新2备用网移动业务技术团队计划降低手机应用大版本更新频率,通过热更新的方式完成日常更新,提升用户体验。

2022年4月17日 版本5.3.0

1.完整修复hg0088新2备用网手机应用内欧冠赛事板块的部分显示错误,并调整显示顺序。

2022年4月13日 版本5.2.9.2

1.修复hg0088新2备用网手机应用内欧冠赛事板块的部分显示错误。
2.hg0088新2备用网体育应用内进行"欧冠欧足联红包雨"活动,于4月12日至4月15日期间合计发放14波红包雨。

2022年3月15日 版本5.2.9

1.hg0088新2备用网体育应用调整部分欧洲体育赛事板块顺序。
2.修复hg0088新2备用网手机应用内部分屏幕显示适配错误。

2022年1月30日 版本5.2.7

1.金虎迎新春,hg0088新2备用网上下全体员工祝各位用户2022壬寅年新春快乐。
2.hg0088新2备用网体育推出多项春节活动。

2022年1月9日 版本5.2.6

1.hg0088新2备用网体育应用内上线英雄联盟2022赛季LPL春季赛相关活动。
2.修复hg0088新2备用网手机应用在夜间模式下的部分显示错误。

2021年12月24日 版本5.2.4

1.hg0088新2备用网手机应用上线圣诞系列赛事活动。
2.更新部分线路,提升用户连接稳定性。

2021年12月1日 版本5.2.2

1.hg0088新2备用网体育手机应用内根据五大足球联赛的相应热度进行页面排版布局的优化。

2021年10月28日 版本5.2.1

1.hg0088新2备用网体育电竞板块迎接S11英雄联盟全球总决赛,上线部分红包活动。
2.在hg0088新2备用网体育预测英雄联盟赛事胜负,获取额外奖励。

2021年9月28日 版本5.1.2

1.月迎中秋,喜迎国庆,hg0088新2备用网手机应用内上线部分红包活动。
2.上调欧冠赛事在左侧选项卡中的显示顺序。

2021年9月10日 版本5.1.1

1.hg0088新2备用网体育更新部分线路,提升用户连接稳定性。

2021年8月10日 版本4.7.3

1.东京奥运会圆满结束,庆祝中国体育健儿获得第二名的好成绩,hg0088新2备用网投放最后一波奥运主题红包。

2021年7月28日 版本4.7.2

1.hg0088新2备用网手机应用内根据东京奥运会的项目热门程度,对整体显示顺序进行调整。

2021年7月16日 版本4.7.1

1.hg0088新2备用网体育上线"传递奥运圣火,助力东京奥运"活动。
2.更新部分线路,提升用户连接稳定性。

2021年7月11日 版本4.6.7

1.hg0088新2备用网体育上线"冠军之路,闯关拿奖"活动,预祝欧洲杯圆满结束。
2.更新部分线路,提升用户连接稳定性。

2021年7月7日 版本4.6.6

1.hg0088新2备用网体育提前上线"助威欧洲杯决赛,分享红包雨"活动,决赛对阵队伍出炉后开始推送。
2.更新部分线路,提升用户连接稳定性。

2021年7月4日 版本4.6.5

1.hg0088新2备用网各线路运营趋向稳定,删除了部分备用线路,保留响应较快的线路以提升用户连接速度。
2.修复部分软件Bug。

2021年6月30日 版本4.6.4

1.由于近期银行整体风控水平加剧,为避免等待时间过长,hg0088新2备用网普通提款通道提款金额范围由原来100-49000调整为5001-49000,5001以下金额提款可使用方便又快捷的【hg0088新2备用网极速提款】通道进行提款。
2.增加部分线路,提升hg0088新2备用网用户连接速度与稳定性。

2021年6月24日 版本4.6.3

1.更新并增添hg0088新2备用网手机应用内部分用于解析的域名,提升用户使用稳定性。
2.在hg0088新2备用网应用内增加转账异常自动处理入口,更好更快解决部分订单转账后入账慢的问题。
3.提升hg0088新2备用网全渠道加密货币USDT存款充值奖励。泰达币(USDT)是基于美元(USD)的加密货币,用户可以随时使用USDT与USD进行1:1兑换,加密货币的低手续费、快转账速度特性比传统货币联网交易的模式有极大优势。

2021年6月18日 版本4.6.2

1.增加欧洲杯相关活动的红包和奖励通知。
2.hg0088新2备用网全站及体育应用增加大量内嵌线路,力求为用户在欧洲杯期间提供稳定服务。
3.修复部分软件Bug。

2021年6月8日 版本4.6.1

1.迎接欧洲杯活动,hg0088新2备用网体育增加大量内嵌线路。
2.伴随防火墙技术升级,近期hg0088新2备用网将频繁出现域名更换现象,请及时关注最新更新信息。

2021年5月28日 版本4.5.9

1.伴随英雄联盟Msi季中赛结束,hg0088新2备用网更改部分显示顺序和入口优先级,对部分Msi赛事玩家投放红包。
2.增加部分线路应对大规模DNS污染活动。

2021年5月6日 版本4.5.8

1.迎接英雄联盟Msi季中赛,hg0088新2备用网更改部分显示顺序和入口优先级。

2021年4月30日 版本4.5.7

1.迎接五一,hg0088新2备用网增加部分优惠信息。

2021年4月7日 版本4.5.6

1.增加部分线路,提升hg0088新2备用网用户连接速度与稳定性。

2021年3月25日 版本4.5.5

1.庆祝hg0088新2备用网与AC米兰达成赞助合作,为相关合作活动内容预留展示窗口。
2.修复部分软件Bug。

2021年3月7日 版本4.5.4

1.更新部分财务界面,提升用户存提款效率。
2.优化项目内容排版。

2021年2月20日 版本4.5.3

1.更新部分线路,提升用户连接稳定性。
2.优化界面前端排版。

2021年2月8日 版本4.5.2

1.庆祝农历新年,全站和体育应用内增加部分优惠及彩蛋内容。
2.修复部分软件Bug。

2021年1月7日 版本4.5.1

1.更新部分线路,提升用户连接稳定性。
Back to top
Proudly powered by K8 Gaming Group | Copyright © 2023 | hg0088新2备用网. 版权所有
hg0088新2备用网 | 澳门皇冠备用网 | 皇冠现金盘 | 澳门赌城网
  • hg0088新2备用网
  • 澳门皇冠备用网
  • 澳门赌城网
  • 皇冠现金盘
Add your widget here
转到手机版